

#### BELGIAN BUILDING RESEARCH INSTITUTE

INSTITUTION RECOGNISED BY APPLICATION OF THE DECREE-LAW OF 30 JANUARY 1947

# All tests in this report are executed according to the ISO 9001 certified Quality management system of the BBRI

Test Centre Offices Head Office B-1342 Limelette, avenue P. Holoffe 21 B-1932 Sint-Stevens-Woluwe, Lozenberg 7 B-1000 Brussels, rue du Lombard 42 Tel.: +32 (0)2 655 77 11 Tel.: +32 (0)2 716 42 11 Tel.: +32 (0)2 502 66 90

#### **TEST REPORT**

|            |     |              | DE 651 XK 869 |
|------------|-----|--------------|---------------|
| Laboratory | CAR | O/References | CAR 13305/2   |
|            |     |              | Page 1/12     |

|                             | SOLUTIA EUROPE BVBA                                                                                 |                              |                                                |  |  |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------|--|--|--|--|
|                             | CORPORATE VILLAGE – ARAMIS BUILDING                                                                 |                              |                                                |  |  |  |  |
| Requested by                | LEONARDO DA VINCILAAN 1                                                                             |                              |                                                |  |  |  |  |
|                             | 1935 ZAVENTEM                                                                                       |                              |                                                |  |  |  |  |
|                             | TEL: 0470/88.44.73 - FAX:02/746                                                                     | .50.00                       | <u>,                                      </u> |  |  |  |  |
| Date of the order           | 2014.04.11                                                                                          | Samples registration         | N-2014-11-022                                  |  |  |  |  |
| Date of the order           | 2014.04.11                                                                                          | Date of reception of samples | 2014.02.17                                     |  |  |  |  |
| Date of the test            | 2014.02.17 to 2014.02.21                                                                            | *                            |                                                |  |  |  |  |
| Date of issue of the report | 2014.05.09                                                                                          |                              |                                                |  |  |  |  |
| Test carried out            | Dynamic and static tests on balustrade elements                                                     |                              |                                                |  |  |  |  |
| References                  | NBN B03-004: Balustrade of buildings (2010) prNBN B03-004: Balustrade of buildings (in preparation) |                              |                                                |  |  |  |  |

This test report contains 12 pages and 1 appendix. This test report may only be reproduced in its entirety. Each page of the original report has been stamped (in red) by the laboratory and initialled by the head of laboratory. The results and findings are only valid for the tested samples.

■ No sample

☑ Sample(s) subjected to destructive test

Sample(s) to be removed from our laboratories 30 calendar days after sending of the report, save in the case of a further written request

Ing. I. Knoops Researcher

Ir. V. Detremmerie
Head of Laboratory

Ir. B. Michaux Deputy Head of Division



#### 1 Introduction

At request of the company Solutia Europe byba, represented by Mr R. Speelman, the laboratory CAR of the BBRI has carried out static (horizontal loads) and dynamic tests on balustrade elements for different combinations of profiles and glass panes. The results of these tests are given in the report with reference "CAR 13305/2".

#### 2 DESCRIPTION OF THE TEST PIECES

The test pieces were received at the research centre of the BBRI in Limelette on February 17<sup>th</sup> 2014 and were registered in the receipts register of test pieces under the number N-2014-11-022 by the laboratory "Roof and Façade elements". It concerns glass balustrade elements for which the composition and dimensions are stated below.

#### 2.1 SCHEMATIC REPRESENTATION OF THE TEST PIECE

The schematic representation of the test pieces is shown on Figure 1.

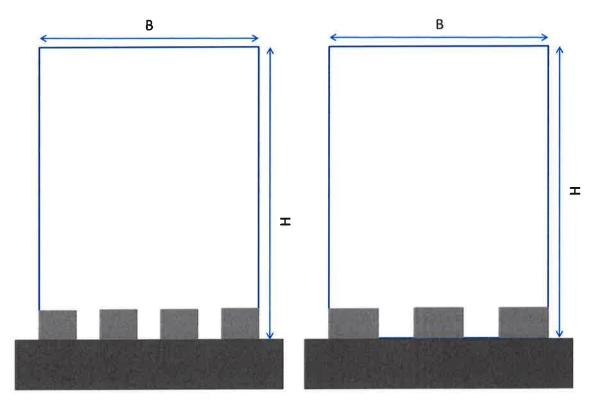
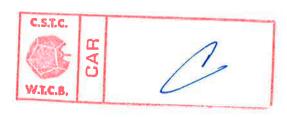




Figure 1: Schematic representation of the test pieces: Aluminco profile, Crystal line (Left types B and C, right type E)





#### 2.2 DIMENSIONS OF THE TEST PIECE

The dimensions of the test pieces and their combination with the different profiles are given in Table 1.

|     |                           | Glass panes                                                      |                        |      |               |                                             |
|-----|---------------------------|------------------------------------------------------------------|------------------------|------|---------------|---------------------------------------------|
| No. | Туре                      | Composition                                                      | Composition Interlayer |      | Width<br>(mm) | Profile                                     |
| 1   | 88.4 mix                  | 8 mm laminated/ 0.76 mm DG 41 /<br>0.76 mm RB 41/8 mm laminated  | DG 41 + RB 41          | 1200 | 1200          | Aluminco, Crystal line<br>Type B (4 pieces) |
| 2   | 88.2 DG 41                | 8 mm laminated / 0,76 mm DG 41<br>/ 8 mm laminated               | DG 41                  | 1200 | 1200          | Aluminco, Crystal line<br>Type C (4 pieces) |
| 3   | 1212.4 toughened<br>DG 41 | 12 mm toughened / 1.52 mm DG<br>41 / 12 mm toughened             | DG 41                  | 1200 | 1200          | Aluminco, Crystal line<br>Type E (3 pieces) |
| 4   | 1010.2 DG 41              | 10 mm laminated / 0,76 mm DG 41 / 10 mm laminated                | DG 41                  | 1200 | 1200          | Aluminco, Crystal line<br>Type E (3 pieces) |
| 5   | 1010.4 mix                | 10 mm laminated / 0,76 mm DG 41 / 0,76 mm RB 41/ 10 mm laminated | DG 41 + RB 41          | 1200 | 1200          | Aluminco, Crystal line<br>Type E (3 pieces) |
| 6   | 1212.4 mix                | 12 mm laminated / 0,76 mm DG 41 / 0,76 mm RB 41/ 12 mm laminated | DG 41 + RB 41          | 1200 | 1200          | Aluminco, Crystal line<br>Type E (3 pieces) |
| 7   | 1212.4 DG 41              | 12 mm laminated / 1,52 mm DG 41 / 12 mm laminated                | DG 41                  | 1200 | 1200          | Aluminco, Crystal line<br>Type E (3 pieces) |

Table 1: Dimensions of the used test pieces and profiles

An overview of the different test pieces is given in Figure 1.



Picture 1: Aluminco, Crystal line type B







Picture 2: Aluminco, Crystal line type E

#### 2.3 DESCRIPTION OF THE TEST PIECE

The characteristics of the elements constituting the test pieces are given by the applicant and described here below:

- Glass composition: the various used glass panes are summarized in Table 1 above
- Fixation on the substrate via an aluminium profile (top-mount). The various glass support profiles are summarized in Table 1 above and are given in Appendix 1
- Drawings: the cross-sections and detailed drawings of the elements are given in Appendix 1

#### 3 DESCRIPTION OF THE TESTS

The object of the test is to verify the behaviour of the balustrade under:

- Static loads: horizontal outwardly directed static service and safety loads (linearly distributed and point horizontal loads). These loads must be combined with the wind loads (*Table 2* gives the dynamic peak pressure to be multiplied by a pressure coefficient of -2).
- Dynamic load: soft body impact test

The loads and their combinations for the static tests on the one hand and the drop height for the soft body impact test on the other hand, are described in the NBN B 03-004 "Balustrades of buildings" (2010). The requirements for residential buildings and offices were used.





After the static tests under horizontal loads, the element must meet the following criteria<sup>1</sup>:

- Service:
  - Under load: glass deflection ≤ H/60 or a maximum of 20 mm (25 mm²) where H is the protection height of the balustrade expressed in mm. The deformation is measured at the level of 1000 mm of the balustrade.
  - Residual deformation ≤ 3 mm
- Security: Residual deformation ≤ H/125 (the glass may not break)

The observations after the tests were noted.

After the impact test, the following criteria must be met:

- The filling element may not separate from the structure of the balustrade
- No fragments that could injure persons may become detached. (In the case of balustrade in structural glass (e.g. clamped), it must continue to exercise its function under the application of a punctual load of 200 N for 30 seconds.)
- The impact body must not pass through the balustrade upon impact
- After the impact, the passage of the hexagonal calibre as defined in 5.2.1 of the NBN B03-004 may not be possible (under a negligible force) for the balustrades without panel
- After the impact, it must not be possible for the balustrades with filling panels to allow the passage of a steel ball with a diameter of 76 mm

|                    | a                     |                           |             |                 | Ref                       | erence he    | ghts ze     |                           |           |              |             |                |     |
|--------------------|-----------------------|---------------------------|-------------|-----------------|---------------------------|--------------|-------------|---------------------------|-----------|--------------|-------------|----------------|-----|
|                    | Wind exposure class 1 |                           |             |                 | Wind expo                 | sure class 2 | !           |                           | Wind expo | sure class 3 | 3           |                |     |
| Reference speed    | vb,0 (m/s)            | 26                        | 25          | 24              | 23                        | 26           | 25          | 24                        | 23        | 26           | 25          | 24             | 23  |
| Roughness cat      | egories               |                           | Reference h | neights (ze) to | 0                         |              | Reference h | eights (ze) te            | ,         |              | Reference h | eights (ze) to | -   |
| Coastal area       | 0                     |                           |             |                 |                           |              |             |                           |           |              |             |                |     |
| Plain              | 1                     |                           |             |                 |                           |              |             |                           |           | 2m           | 2m          | 4m             | 5m  |
| Grove              | H.                    |                           |             | 2m              | 3m                        | 3m           | 3m          | 4m                        | 6m        | 5m           | 6m          | 8m             | 111 |
| Suburb - Forest    | UL                    | 5m                        | 6m          | 7m              | 9m                        | 9m           | 12m         | 15m                       | 19m       | 15m          | 19m         | 21m            | 21n |
| Town               | IV                    | 15m                       | 17m         | 21m             | 25m                       | 25m          | 30m         | 30m                       | 30m       | 30m          | 30m         | 30m            | 30п |
| Dyn, peak pressure | qp(ze)=               |                           | 544         | 1 Pa            |                           |              | 693         | Pa                        |           |              | 815         | Pa             |     |
|                    | F                     |                           | Wind expo   | euro class /    |                           |              | Wind expo   | euro class s              |           |              | Wind expo   | euro class A   |     |
| Reference speed    | vb,θ (m/s)            | 26                        | 25          | 24              | 23                        | 26           | 25          | 24                        | 23        | 26           | 25          | 24             | 23  |
| Roughness cate     | egories               | Reference heights (ze) to |             |                 | Reference heights (ze) to |              |             | Reference heights (ze) to |           |              |             |                |     |
| Coastal area       | 0                     | 3m                        |             |                 |                           | 5m           |             |                           |           | 9m           |             |                |     |
| Plain              | 1                     | 4m                        | 5m          | 8m              | 11m                       | 7m           | 10m         | 14m                       | 22m       | 12m          | 14m         | 27m            | 42n |
| Grove              |                       | 9m                        | 11m         | 15m             | 16m                       | 14m          | 16m         | 16m                       | 22m       | 16m          | 16m         | 27m            | 42n |
| Suburb - Forest    | 111                   | 21m                       | 21m         | 21m             | 21m                       | 21m          | 21m         | 21m                       | 22m       | 21m          | 21m         | 27m            | 42n |
| Town               | IV                    | 30m                       | 30m         | 30m             | 30m                       | 30m          | 30m         | 30m                       | 30m       | 30m          | 30m         | 30m            | 42m |
| Dyn peak pressure  | qp(ze)=               |                           | 950         | ) Pa            |                           |              | 1086 Pa     |                           |           | 1224 Pa      |             |                |     |
|                    | -                     |                           |             |                 |                           |              |             |                           |           |              |             |                |     |
|                    |                       |                           | Wind expo   | sure class 7    |                           |              |             |                           |           | *1           |             |                |     |
| Reference speed    | vb,0 (m/s)            | 26                        | 25          | 24              | 23                        |              |             |                           |           |              |             |                |     |
| Roughness cate     | gorles                |                           | Reference h | eights (zo) to  |                           |              |             |                           |           |              |             |                |     |
| Coastal area       | 0                     | 15m                       |             |                 |                           |              |             |                           |           |              |             |                |     |
| Plain              | ti.                   | 21m                       | 31m         | 48m             | 78m                       |              |             |                           |           |              |             |                |     |
| Grove              | U                     | 21m                       | 31m         | 48m             | 78m                       |              |             |                           |           |              |             |                |     |
| Suburb - Forest    | m m                   | 21m                       | 31m         | 40m             | 78m                       |              |             |                           |           |              |             |                |     |
| Town               | N                     | 30m                       | 31m         | 48m             | 78m                       |              |             |                           |           |              |             |                |     |
| Dyn, peak pressure | qp(ze)=               |                           | 136         | 4 Pa            |                           |              |             |                           |           |              |             |                |     |

Table 2: Wind classes according to prNBN B 03-004 (in preparation)

<sup>2</sup> Absolute value. No more criteria in relation to the balustrade height.





Between brackets and italics, the updated criteria according to the prNBN B03-004



#### 4 RESULTS OF THE TESTS

The results that do not meet the test criteria are indicated in red and bold in the tables.

The results that meet the test criteria according to the standard under review are indicated in blue and bold in the tables.

#### 4.1 PROFILE TYPE B (ALUMINCO)

#### 4.1.1 STATIC TESTS

The results of the static tests are summarized in Table 3.

The static loads were applied to one glass pane. The tests were conducted without wind pressure.

|                          |                 | Туре В (                          | Aluminco): residentia                               | al buildings and o              | offices                                                                  |                                   |  |
|--------------------------|-----------------|-----------------------------------|-----------------------------------------------------|---------------------------------|--------------------------------------------------------------------------|-----------------------------------|--|
|                          |                 |                                   | Serviceability Lin                                  | nit States                      |                                                                          |                                   |  |
|                          |                 |                                   |                                                     |                                 | Test criteria                                                            | (mm)                              |  |
| Profile<br>model         | Glazing<br>type | Category                          | Base horizontal<br>load for the load<br>combination | Wind class<br>(WCI)             | Glass deformation<br>(current standard<br>20 mm; pre-<br>standard 25 mm) | Residual<br>deformation<br>(3 mm) |  |
|                          |                 | Α                                 | q <sub>k,h</sub> : 0,5 kN/m                         | /                               | 21,43                                                                    | 1,91                              |  |
| Model B                  | 88.4 mix        | Α                                 | Q <sub>kh,1</sub> : 0,5 kN                          | 1                               | 21,16                                                                    | 1,74                              |  |
|                          |                 |                                   | Q <sub>kh,2</sub> : 0,5 kN*                         |                                 | Not requested                                                            |                                   |  |
|                          |                 |                                   | Ultimate Limit                                      | States                          |                                                                          |                                   |  |
| Profile Glazing Category |                 | Base horizontal load for the load | Wind class                                          | Test criteria (auth<br>deformat |                                                                          |                                   |  |
| model type               |                 | combination                       | (WCI)                                               | Residual deformation (9,6mm)    |                                                                          |                                   |  |
|                          |                 | Α                                 | q <sub>k,h</sub> : 0,5 kN/m                         | / Broke                         |                                                                          | 1                                 |  |
| Model B 88.4             | 88.4 mix        | Α                                 | Q <sub>kh,1</sub> : 0,5 kN                          | 1                               | 3,92                                                                     |                                   |  |
|                          |                 |                                   | Q <sub>kh,2</sub> : 0,5 kN*                         |                                 | Not reque                                                                | sted                              |  |

Table 3: Results of the static tests

Note: The values in red do not satisfy and the values in blue satisfy according to the prNBN B03-004, but not according to the current NBN B03-004

with  $q_{k,h}$ : uniform horizontal linear load applied at the level of 1000 mm of the railing<sup>3</sup>.

Q<sub>kh,1</sub>: horizontal point load for the local verification at the 1000 mm of the railing<sup>3</sup>

Q<sub>kh,2</sub>: horizontal point load for the location verification under protection height, applied to the most unfavourable position.

\*: These tests were not carried out as the uppermost boundary conditions are more decisive.



<sup>&</sup>lt;sup>3</sup>From the uppermost level of the profile foot



#### Conclusion

The tested balustrade (Aluminco profile type B, with an 88.4 mix) meets the requirements of **prNBN B03-004** for *residential buildings* w.r.t. the uniform horizontal linear and concentrated static loads

- in Serviceability Limit States
- without wind load

The tested balustrade (Aluminco profile type B, with an 88.4 mix) meets the requirements of **NBN B03-004** for *residential buildings* w.r.t. concentrated static loads

- in Ultimate Limit States
- · without wind load

#### 4.1.2 DYNAMIC TESTS

The results of the impact test out are summarized in Table 4.

| Balustrade            | Drop<br>height<br>(mm) | Impact point                                             | Comments                                |
|-----------------------|------------------------|----------------------------------------------------------|-----------------------------------------|
| Model B with 88.4 mix | 300                    | 110 cm from the ground, in the corner of the glass panel | OK, meets the criteria presented in § 3 |

Table 4: Results of the soft body impact test

# Conclusion

The tested balustrade (Aluminco profile type B, with an 88.4 mix float) meets the requirements of **NBN B03-004** for *residential buildings* w.r.t. the impact test of a soft heavy body.

#### 4.2 PROFILE TYPE C (ALUMINCO)

#### 4.2.1 STATIC TESTS

The results of the static tests are summarized in Table 5.

The static loads were applied to one glass pane. The tests were conducted with wind pressure.





|                               |              |                                | ype C (Aluminco): res                               | idential building    | ZS .                                                                    |                                   |
|-------------------------------|--------------|--------------------------------|-----------------------------------------------------|----------------------|-------------------------------------------------------------------------|-----------------------------------|
|                               |              |                                | Serviceability Li                                   | mit States           |                                                                         |                                   |
|                               |              |                                |                                                     |                      | Test criteria (                                                         | mm)                               |
| Profile<br>model              | Glazing type | Category                       | Base horizontal<br>load for the load<br>combination | Wind class<br>(WCI)  | Glass deformation<br>(current standard 20<br>mm; pre-standard 25<br>mm) | Residual<br>deformation<br>(3 mm) |
|                               |              | Α                              | q <sub>k,h</sub> : 0,5 kN/m                         | 2                    | Broken                                                                  | /                                 |
| Model C                       | 88.2 DG 41   | Α                              | Q <sub>kh,1</sub> : 0,5 kN                          | 2                    | 1                                                                       | /                                 |
|                               |              | Q <sub>kh,2</sub> : 0,5 kN*    |                                                     | Not requested        |                                                                         |                                   |
|                               |              |                                | Ultimate Limi                                       | t States             | 500                                                                     |                                   |
| Profile Glazing type Category |              | Category                       | Base horizontal<br>load for the load                | Wind class           | Test criteria (authorized max. deformation)                             |                                   |
| model 3                       |              | combination                    | (WCI)                                               | Residual deformation | on (9,6mm)                                                              |                                   |
|                               |              | Α                              | q <sub>k,h</sub> : 0,5 kN/m                         | 2                    |                                                                         |                                   |
| Model C 88.2 DG 4             | 88.2 DG 41   | 41 A Q <sub>kh,1</sub> : 0,5 k |                                                     | 2                    | /                                                                       |                                   |
|                               | ·            |                                | Q <sub>kh,2</sub> : 0,5 kN*                         |                      | Not reques                                                              | ted                               |

Table 5: Results of the static tests

Note: The values in red do not satisfy and the values in blue satisfy according to the prNBN B03-004, but not according to the current NBN B03-004

with  $q_{k,h}$ :

uniform horizontal linear load applied at the level of 1000 mm of the railing<sup>4</sup>.

horizontal point load for the local verification at the 1000 mm of the railing<sup>3</sup>

Q<sub>kh,1</sub>:

horizontal point load for the location verification under protection height, applied to the

most unfavourable position.

\*: These tests were not carried out as the uppermost boundary conditions are more decisive.

**/**:

tests were not executed

#### Conclusion

The tested balustrade (profile C Aluminco, with an 88.2 DG 41) does **NOT** meet the requirements of **prNBN B03-004** for *residential buildings* w.r.t. uniform horizontal linear static loads under wind class 2.

#### 4.2.2 DYNAMIC TESTS

These were not carried out given the failure of the uniform horizontal linear static loads.



<sup>&</sup>lt;sup>4</sup>From the uppermost level of the profile foot



### 4.3 PROFILE TYPE E (ALUMINCO)

#### 4.3.1 STATIC TESTS

The results of the static tests are summarized in Table 6.

The static loads were applied to five glass panes. The tests were conducted with and without wind pressure.

|                    | Type E (Alu                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ffices                                                                  |                                                                                                                                                          |
|--------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | 1                                                                                                                            | Serviceability Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Test criteria /                                                         | mm)                                                                                                                                                      |
| Glazing type       | Category                                                                                                                     | Base horizontal<br>load for the load<br>combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wind class<br>(WCI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Glass deformation<br>(current standard 20<br>mm; pre-standard 25<br>mm) | Residual<br>deformatio<br>(3 mm)                                                                                                                         |
| 1212 4 DG 41       | C5a≤2m                                                                                                                       | q <sub>k,h</sub> : 3,0 kN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32,91                                                                   | 3,75                                                                                                                                                     |
|                    | C5a≤2m                                                                                                                       | Q <sub>kh,1</sub> : 2,0 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25,15                                                                   | 0,31                                                                                                                                                     |
| toubliched         |                                                                                                                              | Q <sub>kh,2</sub> : 0,5 kN*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         | eđ                                                                                                                                                       |
|                    |                                                                                                                              | q <sub>k,h</sub> : 1,0 kN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23,19                                                                   | 1,27                                                                                                                                                     |
| 1010.2 DG 41       | Α                                                                                                                            | q <sub>k,h</sub> : 0,5 kN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22,45                                                                   | 0,71                                                                                                                                                     |
|                    |                                                                                                                              | Q <sub>kh,2</sub> : 0,5 kN*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not request                                                             | ed                                                                                                                                                       |
| 1010 / miv         | В                                                                                                                            | q <sub>k,h</sub> : 1,0 kN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23,68                                                                   | 2,94                                                                                                                                                     |
| Model E 1010.4 mix | В                                                                                                                            | Q <sub>kh,1</sub> : 1,0 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20,95                                                                   | 0,99                                                                                                                                                     |
| 1212.4 mix         | В                                                                                                                            | q <sub>k,h</sub> : 1,0 kN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23,36                                                                   | 1,88                                                                                                                                                     |
|                    | В                                                                                                                            | q <sub>k,h</sub> : 1,0 kN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13,93                                                                   | 0,20                                                                                                                                                     |
|                    | В                                                                                                                            | Q <sub>kh,1</sub> : 1,0 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12,98                                                                   | 0,05                                                                                                                                                     |
| 1212.4 DG 41       | В                                                                                                                            | q <sub>k,h</sub> : 1,0 kN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21,91                                                                   | 0,15                                                                                                                                                     |
|                    | В                                                                                                                            | Q <sub>kh,1</sub> : 1,0 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ok (see WCl 3)                                                          | Ok (see W0                                                                                                                                               |
|                    |                                                                                                                              | Ultimate Limit St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |                                                                                                                                                          |
| Glazing type       | Category                                                                                                                     | Base horizontal load for the load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wind class<br>(WCI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Test criteria (authorized max. deformation)                             |                                                                                                                                                          |
|                    | CF (2)                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         | n (9,6mm)                                                                                                                                                |
| 1212.4 DG 41       |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |                                                                                                                                                          |
| toughened          | C5a≤2m                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         | _                                                                                                                                                        |
|                    |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         | ed                                                                                                                                                       |
|                    |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |                                                                                                                                                          |
| 4040 2 00 44       |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |                                                                                                                                                          |
| 1010.2 DG 41       | -                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |                                                                                                                                                          |
|                    | Α                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |                                                                                                                                                          |
|                    | P                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         | ed                                                                                                                                                       |
| 1010.4 mix         |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del>  ',  </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |                                                                                                                                                          |
|                    |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |                                                                                                                                                          |
| 1212.4 mix         | -                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |                                                                                                                                                          |
|                    |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |                                                                                                                                                          |
| 1212.4 DG 41       | В                                                                                                                            | Q <sub>kh,1</sub> : 1,0 kN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,70                                                                    |                                                                                                                                                          |
|                    |                                                                                                                              | I AJIGA, I IJKIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U.7U                                                                    |                                                                                                                                                          |
| 1212.4 DG 41       | В                                                                                                                            | q <sub>k,h</sub> : 1,0 kN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,82                                                                    |                                                                                                                                                          |
|                    | 1212.4 DG 41 toughened  1010.2 DG 41  1010.4 mix 1212.4 mix  1212.4 DG 41 Glazing type  1212.4 DG 41 toughened  1010.2 DG 41 | Glazing type  Category  1212.4 DG 41 toughened  B 1010.2 DG 41 A  1010.4 mix  B 1212.4 mix  B B B B 1212.4 DG 41 B B B Category  C5a≤2m  C5a≤2m | Glazing type         Category         Base horizontal load for the load combination           1212.4 DG 41 toughened         C5a≤2m $Q_{k,h}$ : 3,0 kN/m $Q_{k,h,2}$ : 0,5 kN*           1010.2 DG 41 A $Q_{k,h}$ : 0,5 kN/m $Q_{k,h}$ : 0,5 kN/m $Q_{k,h}$ : 0,5 kN/m $Q_{k,h}$ : 1,0 kN/m B $Q_{k,h}$ : 1,0 kN/m D $Q_{k,h}$ : 1,0 kN/m D $Q_{k,h}$ : 0,5 kN/m D $Q_{k,h}$ : 1,0 kN/m B $Q_{k,h}$ : 1 |                                                                         | Category   Category   Base horizontal load for the load combination   Wind class (WCI)   Glass deformation (current standard 20 mm; pre-standard 25 mmm) |

Table 6: Results of the static tests









Note: The values in red do not satisfy and the values in blue satisfy according to the prNBN B03-004, but not according to the current NBN B03-004

with  $q_{k,h}$ : uniform horizontal linear load applied at the level of 1000 mm of the railing

Q<sub>kh,1</sub>: horizontal point load for the local verification at the 1000 mm of the railing<sup>3</sup>

Q<sub>kh,2</sub>: horizontal point load for the location verification under protection height, applied to the most unfavourable position

\*: These tests were not carried out as the uppermost boundary conditions are more decisive

#### Conclusion

The tested balustrade (Aluminco profile type E, with a 1212.4 DG 41 toughened) meets the requirements of prNBN B03-004 for spaces that can accommodate upright crowds (horizontal distance between balustrades ≤2 m) w.r.t. uniform horizontal linear and concentrated static loads

- in Ultimate Limit States
- without wind load

The tested balustrade (Aluminco profile type C, with a 1010.2 DG 41) meets the requirements of **prNBN B03-004** for *residential buildings* w.r.t. the uniform horizontal linear static loads

- in Serviceability Limit States
- with wind class 3

The tested balustrade (Aluminco profile type E, with a 1010.2 DG 41) meets the requirements of **prNBN B03-004** for *office buildings* w.r.t. the uniform horizontal linear static loads

- in Serviceability Limit States
- with wind class 1

The tested balustrade (Aluminco profile type E, with a 1010.2 DG 41) meets the requirements of **prNBN B03-004** for *residential buildings* w.r.t. the uniform horizontal linear and concentrated static loads

- in Ultimate Limit States
- with wind class 3

The tested balustrade (Aluminco profile type E, with a 1010.4 DG 41) meets the requirements of **prNBN B03-004** for *office buildings* w.r.t. the uniform horizontal linear and concentrated static loads

- in Serviceability Limit States
- without wind

The tested balustrade (Aluminco profile type E, with a 1010.4 DG 41) meets the requirements of **NBN B03-004** for *office buildings* w.r.t. the uniform horizontal linear and concentrated static loads

- in Ultimate Limit States
- without wind

The tested balustrade (Aluminco profile type E, with a 1212.4 DG 41 mix) meets the requirements of prNBN B03-004 for office buildings w.r.t. the uniform horizontal linear static loads

O

W.T.C.B.

<sup>&</sup>lt;sup>5</sup>From the uppermost level of the profile foot



- in Serviceability Limit States
- with wind class 2

The tested balustrade (Aluminco profile type E, with a 1212.4 DG 41 mix) meets the requirements of **NBN B03-004** for *office buildings* w.r.t. the uniform horizontal linear and concentrated static loads

- in Ultimate Limit States
- with wind class 2

The tested balustrade (Aluminco profile type E, with a 1212.4 DG 41) meets the requirements of NBN B03-004 for office buildings w.r.t. the uniform horizontal linear and concentrated static loads

- in Serviceability Limit States and Ultimate Limit States
- with wind class 3

The tested balustrade (Aluminco profile type E, with a 1212.4 DG 41) meets the requirements of **prNBN B03-004** for *office buildings* w.r.t. the uniform horizontal linear and concentrated static loads

- in Serviceability Limit States
- with wind class 5

The tested balustrade (Aluminco profile type E, with an 1212.4 DG 41) meets the requirements of **NBN B03-004** for *office buildings* w.r.t. the uniform horizontal linear and concentrated static loads

- in Ultimate Limit States
- with wind class 5

#### 4.3.2 DYNAMIC TESTS

The results of the impact test are summarized in Table 7.

| Balustrade                | Drop<br>height<br>(mm) | Impact point                                             | Comments                                |
|---------------------------|------------------------|----------------------------------------------------------|-----------------------------------------|
| Model B with 88.4 mix     | 300                    | 110 cm from the ground, in the corner of the glass panel | OK, meets the criteria presented in § 3 |
| Model E with 1212.4 mix   | 450                    | 110 cm from the ground, in the corner of the glass panel | OK, meets the criteria presented in § 3 |
|                           | 700                    | 110 cm from the ground, in the corner of the glass panel | OK, meets the criteria presented in § 3 |
| Model E with 1212.4 DG 41 | 700                    | 110 cm from the ground, in the corner of the glass panel | OK, meets the criteria presented in § 3 |

Table 7: Results of the soft body impact test

#### **Conclusion**

The tested balustrade (Aluminco profile type E, with a 1010.2 DG 41) meets the requirements of **NBN B03-004** for *residential buildings* and *office buildings* w.r.t. the impact test of a soft heavy body.

The tested balustrade (Aluminco profile type E, with a 1212.4 mix) meets the requirements of NBN B03-004 for residential buildings, office buildings and spaces where people can gather w.r.t. the impact test of a soft heavy body.

W.T.C.B.



The tested balustrade (Aluminco profile type E, with a 1212.4 DG 41) meets the requirements of **NBN B03-004** for *residential buildings, office buildings and spaces where people can gather* w.r.t. the impact test of a soft heavy body.

#### 5 CONCLUSION

The following table provides an overview of the balustrades that meet the requirements of NBN B 03-004 for specific use with respect to the uniform horizontal linear and concentrated static loads and the impact test of a soft heavy body.

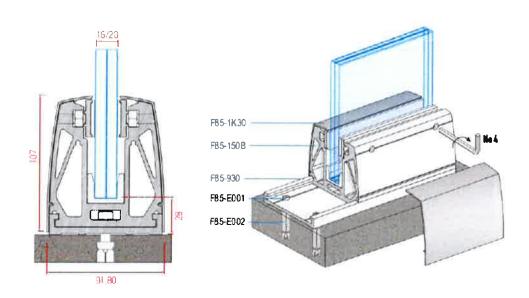
| Dunfile |                           |                                                                 |                                                    |                                                                                                                       |                                         |                                          |  |
|---------|---------------------------|-----------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|--|
| Profile | Glazing types             | Usage boundary                                                  | conditions                                         | Uppermost bound                                                                                                       | Impact test                             |                                          |  |
| types   |                           | Uniform linear                                                  | Concentrated                                       | Uniform linear                                                                                                        | Concentrated                            |                                          |  |
| Model B | 88.4 mix<br>float         | Residential buildings,<br>without wind                          | Residential buildings, without wind                | Residential<br>buildings,<br>without wind                                                                             | /                                       | Residential<br>buildings                 |  |
| Model C | 88.2 DG 41<br>float       | 1                                                               | /                                                  | 1                                                                                                                     | /                                       | /                                        |  |
| Model E | 1212.4 DG 41<br>toughened | / /                                                             |                                                    | Spaces that can accommodate<br>upright crowds (horizontal<br>distance between balustrades ≤2<br>m), without wind load |                                         | /                                        |  |
| Model E | 1010.2 DG 41<br>float     | Residential buildings,<br>wind class 3<br>Offices, wind class 1 | /                                                  | / Residential buildings, wind class 3 Offices, wind class 1                                                           |                                         | Residential<br>buildings<br>and offices. |  |
| Model E | 1010.4 mix<br>float       | Residential buildings a<br>class 5                              |                                                    | Residential buildir<br>wind cla                                                                                       | •                                       | spaces<br>where<br>people can<br>gather  |  |
| Model E | 1212.4 mix<br>float       | Residential buildings,<br>wind class 3<br>Offices, wind class 1 | wind class 3 / Residential buildings, wind class 3 |                                                                                                                       | Residential buildings and offices.      |                                          |  |
| Model E | 1212.4 DG 41<br>float     | Residential buildings a<br>class 5                              | nd offices, wind                                   | Residential buildir<br>wind cla                                                                                       | spaces<br>where<br>people can<br>gather |                                          |  |

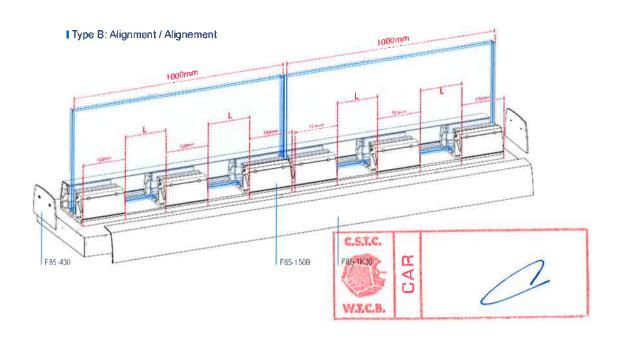
By comparison and <u>for the same type of profiles</u>, one can expect that a toughened glass would have <u>at</u> <u>least the same performance</u> as a float glass of the same composition and dimensions.

#### 6 LIST OF APPENDIXES

Appendix 1: Detail drawings of the various profiles







#### Appendix 1: Detail drawings of the various profiles

# Crystal line Type B



Glas ondersteund systeem in opbouw Système de base apparente supportant le vitrage (pose à la française)







#### Crystal line Type B (cont'd)

#### | Profiles & Accessories / Profilés & Accssoires



#### I Glass supporting base / Base supportant le vitrage

Bases iclude screws, gaskets and pressure plates. Les bases incluent des vis, des joints et des plaquettes de pression.



For glass 16mm\* Pour vitrage 16mm\*

| Code                 | F85-150B/16 |
|----------------------|-------------|
| Package<br>Emballage | 12 pcs.     |



For glass 20mm Pour vitrage 20mm

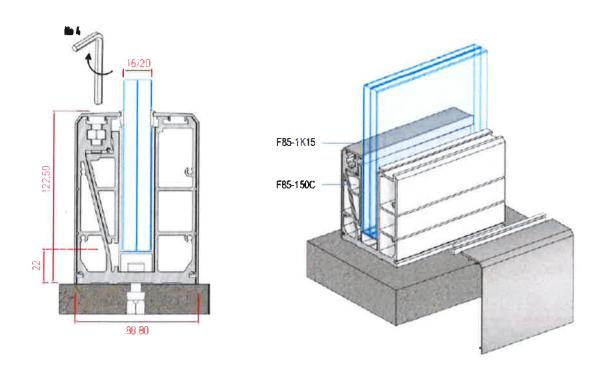
| Code                 | F85-150B/20 |
|----------------------|-------------|
| Package<br>Emballage | 12 pcs.     |

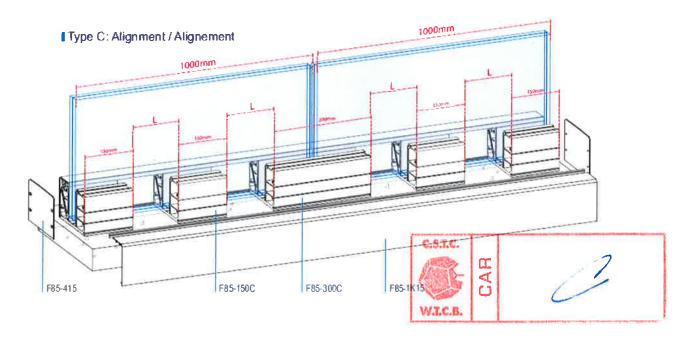
in case of using a 16mm glass, cover gasket is compulsory. En cas de fixation d'un vitrage de 16mm, le joint des caches est indispensable.



#### Cover gasket Joint des caches

| Code   | F85-434 |
|--------|---------|
| Longth | 250 m   |




# Crystal line Type C



# Glas ondersteund systeem in opbouw Système de base apparente supportant le vitrage (pose à la française)







## Crystal line Type C (cont'd)

#### I Profiles & Accessories / Profilés & Accssoires



Base cover Cache de la base

| Code              | F85-1K15 |
|-------------------|----------|
| Weight / Poids    | 696 gr/m |
| Length / Longetin | 6 m      |



Cap Capuchon

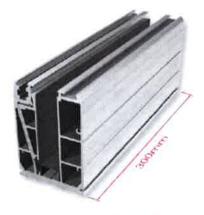
| Code                 | F85-415 |
|----------------------|---------|
| Package<br>Embaliage | 20 pcs. |



Cap Capuchon

Code F85-415L (16mm)

F85-415M (20mm)
Package
Emballage
20 pcs.


#### Glass supporting base / Base supportant le vitrage

Bases iclude screws and gaskets. Type C bases are used in both in-floor and on-floor systems.

Les bases incluent des vis et joints. Les bases de Type C sont utilisées en apparent aussi bien qu'en encastré



Code F85-150C/16\* F85-150C/20\*\* Package Embalage 12 pcs.

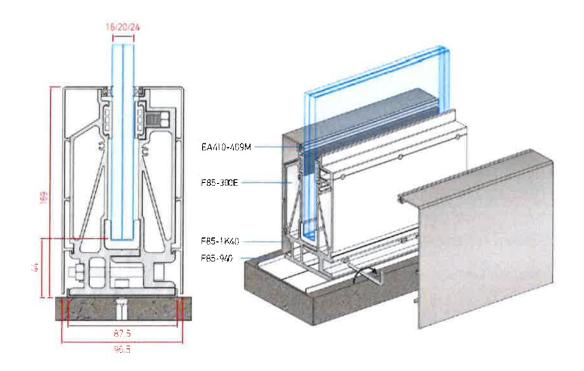


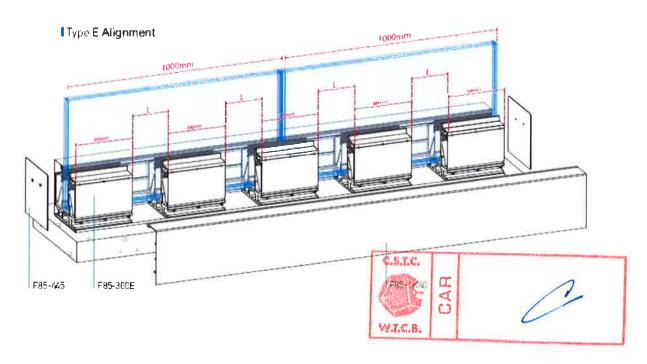
Code F85-300C/16\*
F85-300C/20\*\*
Package
Embellage 6 pcs.



<sup>\*\*</sup> For glass 20mm / Pour vitrage 20mm





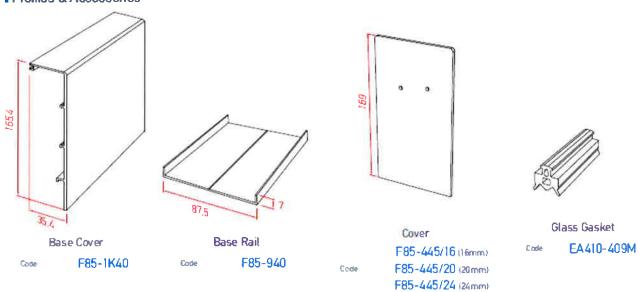


# Crystal line Type E



Glas ondersteund systeem in opbouw

Système de base apparente supportant le vitrage
(pose à la française)

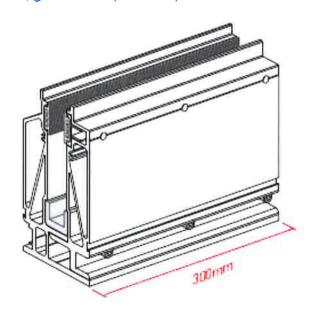









# Crystal line Type E (cont'd)


#### Profiles & Accessories



# I Glass supporting base

Code

Bases iclude screws, gaskets and pressure plates.



F85-300E/16 (16mm\*)

\*For glass 16mm

F85-300E/20 (20mm\*\*)

For glass 20mm.

F85-300E/24 (24mm\*\*) \*\*\*For glass 24mm

